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Abstract: Several electrochemical properties (the titration curve, Donnan distribution of counterions, and osmotic 
properties) of permeable multichain polyelectrolyte molecules at finite polymer concentration, in the presence and 
absence of salt, have been computed. The model used for the calculation of the electrostatic potential, ^, is a 
permeable cylinder with a uniform distribution of the fixed charges. The Poisson-Boltzmann equation was solved 
numerically, with the boundary conditions that the potential and gradient of the potential, respectively, are equal 
on both sides of the surface of the macromolecule. The dimensions of the cylinder correspond to those for a 
multichain polymer in which the polyamino acid chains are either in the a-helical or fully stretched conformations, 
respectively. The model is thus applicable for evaluation of the electrochemical properties of multichain poly­
amino acids in which a helix -»• fully stretched transformation may occur as the degree of ionization of the charged 
groups increases. The computed titration curves are in agreement with those obtained by Goldstein2 for a multi­
chain poly-L-glutamic acid, taking cognizance of the effect of conformation on pK0. The theory may also be ap­
plicable to proteins and nucleic acids. 

Goldstein2 has examined the titration curves of some 
multichain polyamino acids.3,4 The multichain 

polymers are prepared, for example, by using the e-
amino groups of a poly-L-lysine chain to initiate the 
polymerization of 7-benzyl-N-carboxyl-L-glutamate an­
hydride; debenzylation yields the corresponding multi­
chain polyglutamic acid. 

Since the multichain polyamino acids have a cross 
section into which small ions may penetrate, these 
polymers are useful models for the study of the electro­
chemical and transport properties of charged branched 
macromolecules. The aim of this paper is to develop a 
theory to account for some of the electrochemical prop­
erties of such macromolecules, viz., the titration curve, 
Donnan distribution of counter ions, and osmotic prop­
erties. While the theory will be applied here to Gold­
stein's data2 on the multichain polymer, it may have 
applicability to other macromolecules, such as globular 
proteins and nucleic acids, which are also penetrable by 
small ions. From one point of view, the multichain 
polymer may also serve as a model for a charged bio­
logical membrane, through which ions may pass. 

The multichain polymer, being an ionizable macro-
molecule, consists of a discrete number of inner charges, 
and will give rise to an unequal distribution of the 
counterions and co-ions inside and outside the molecule. 
Our primary interest is in the computation of the equi­
librium properties of such a system. These, in turn, are 
derivable from the electrostatic potential5 which will be 
computed here. 

(1) This work was begun in 1963 while H. A. S. was a Fulbright 
Research Scholar and Guggenheim Fellow at the Weizmann Institute. 
Subsequent support, at Cornell University, was received from a research 
grant (GB-7571X) from the National Science Foundation, and from a 
research grant (GM-14312) from the National Institute of General 
Medical Sciences of the National Institutes of Health, U. S. Public 
Health Service. 

(2) L. Goldstein, Ph.D. Thesis, Hebrew University, Jerusalem, March 
1963. 

(3) E. Katchalski, M. SeIa, H. I. Silman, and A. Berger in "The 
Proteins," Vol. II, 2nd ed, H. Neurath, Ed., Academic Press, New 
York, N. Y., 1964, p 405. 

(4) A. Berger and A. Yaron in "Polyamino Acids, Polypeptides, and 
Proteins," M. A. Stahmann, Ed., University of Wisconsin Press, Madi­
son, Wis., 1962, p 13. 

The Model 

A schematic model of a multichain polymer will be 
used as a basis for the calculation of the electrostatic 
potential ^. A polymer consisting of a polylysine 
backbone and polyglutamic acid branches may be re­
garded as having the shape of a prolate ellipsoid of rev­
olution. Since the major contribution to the local po­
tential, at finite salt concentration, is made by the ionic 
species in the immediate neighborhood of any charge, 
end effects may be neglected as an approximation. In 
the presence of salt, the ellipsoid can therefore be ap­
proximated by a cylinder, which is much simpler to 
treat mathematically. The cylindrical approximation 
becomes better for larger backbones (compared to the 
branches) and for increasing ionic strength. The cyl­
inder is considered to have a length h and radius a (see 
Figure 1). The values of h and a will depend on the 
conformations of the various chains of the molecule; as 
illustrative cases, we have chosen extreme values of these 
parameters which correspond to a-helical and fully 
stretched conformations, respectively. Therefore, the 
computed electrochemical properties will not only be 
those of the two conformations mentioned, but will also 
be useful for a consideration of the transformation be­
tween the a-helical and fully stretched conformations. 

Since it is possible to titrate all the carboxyl groups,2 

the molecule must be permeable to the solvent. How­
ever, we cannot utilize previous theories of permeable 
molecules6 since they are based on the Debye-Huckel 
approximation, i.e., that t^fkT« 1, a condition which 
does not hold for multichain polyamino acids even at 
moderate degrees of ionization. Since the Poisson-
Boltzmann equation (without the Debye-Hiickel linear­
ization of the exponential) is regarded as a reasonable 
approximation for the study of polyelectrolyte solu­
tions,7 we will treat the permeable cylinder by solving 

(5) A. Katchalsky, Z. Alexandrowicz, and O. Kedem in "Chemical 
Physics of Ionic Solutions," B. E. Conway and R. G. Barradas, Ed., 
John Wiley & Sons, Inc., New York, N. Y., 1966, p 295. 

(6) See, e.g., C. Tanford, J. Phys. Chem., 59, 788 (1955). 
(7) S. A. Rice and M. Nagasawa, "Polyelectrolyte Solutions," 

Academic Press, New York, N. Y., 1961, pp 99-118. 
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the Poisson-Boltzmann equation without making the 
Debye-Huckel approximation. The treatment, which 
is most similar to ours, is that of Gross and Strauss8 

which pertains to infinitely dilute polymer solutions of 
permeable and impermeable cylindrical polyelectro-
lytes. In the treatment of Gross and Strauss, it is as­
sumed that there is no interaction between polymer 
molecules, and that each macromolecule is surrounded 
by an infinite amount of salt solution. Their approach 
is equivalent to that used by Wall and Berkowitz9 for a 
spherical macromolecule. Instead of using the com­
putational procedure of Wall and Berkowitz for the 
spherical macromolecule, Lifson10 substituted a pertur­
bation method which provided an analytical solution 
for the potential. Lifson's approach can also provide 
an analytical solution for the cylindrical model treated 
by Gross and Strauss. However, since we are interested 
infinite polymer concentrations in the present paper, the 
simplifications underlying the infinitely dilute solution 
treatment cannot be made (because the concentrations 
of counterions and co-ions are not equal at the symmetry 
surface between macromolecules, as they are at infinite 
dilution of polymer). Therefore, we have had to have 
recourse to a more detailed numerical computational 
procedure rather than use the analytical treatment of 
Lifson. 

A model for the solution of multichain molecules at 
finite concentration is the cell model of the statistical 
theory of solutions. It is assumed that we may allocate 
to each of the np macromolecules suspended in a volume v 
(or Wp moles per cm3) a "cell" of volume V = v/np — 1/ 
Nmp, where JV is Avogadro's number. The shape of the 
cell is isomorphous with that of the macromolecule itself, 
and has the same height h (see Figure 1). The radius R 
of the cell is given by the condition irR2h = V. The 
volume of the multichain molecule is wa2h; hence, the 
volume fraction, vp, of polymer in solution is given by 

Since J?2 = \lirhmpN, vp = ira2hmpN. It will be ob­
served that the model implies that the cylindrical mole­
cules are arranged in a roughly parallel array so that, 
neglecting end effects, the electrostatic potential \p 
becomes a function of the radial coordinate r only. 
The justification for the use of a parallel-array model 
derives from the important fact that there is a rather 
sharp drop in the potential from the polymer surface to­
ward the boundary of the cell. In the region of r = R, 
the potential is fairly constant;5 therefore, any devia­
tion of the orientation of the macromolecules from the 
parallel arrangement will have little influence on the 
local value of \f/. Moreover, the electrostatic repulsion 
between the charged macromolecules will diminish the 
probability of density and orientational fluctuations; 
hence, the cell model is a reasonable one for charged 
macromolecules. 

One should not be misled, because of the small varia­
tion in \p near r = R, into thinking that the cell-model 
treatment is equivalent to that for a single molecule in 
an infinite volume. The values of both \p and the 

(8) L. M. Gross and U. P. Strauss in "Chemical Physics of Ionic 
Solutions," B. E. Conway and R. G. Barradas, Ed., John Wiley & Sons, 
Inc., New York, N. Y., 1966, p 361. 

(9) F. T. Wall and J. Berkowitz, J. Chem. Phys., 26, 114 (1957). 
(10) S. Lifson, ibid., 27, 700 (1957). 

Figure 1. Cell model for the solution of multichain polymers. The 
cylindrical shape of the cell is isomorphous with that of the macro­
molecule, and has the same height h. The radii of the macromole­
cule and of the cell are a and R, respectively, r is a radial coordinate. 

ionic distribution depend on R, and should be evaluated 
explicitly. 

At the cell boundary the value of the potential is an 
extremum so that (b\f/jbr)R = 0. For convenience, we 
take the value of \p at R as our reference point of poten­
tial, i.e., \pB = 0. 

Charge Distribution and Potential 

The total number of ionizable groups (i.e., carboxyl 
groups) per molecule is Z. At a given degree of ioniza­
tion, a, there will be v charged sites per molecule, where 
a = v/Z. Had the carboxylate ion groups been free 
negative charges, such as the electrons in a conductor, 
we would expect all the v charges to accumulate at the 
surface of the cylinder. However, since the location of 
the carboxyl groups is fixed by the geometry of the mac­
romolecule, such an accumulation is impossible. 
Moreover, the entropic losses accompanying the forma­
tion of any specified ionic conformation make the ran­
dom homogeneous distribution of the charged groups 
sufficiently favorable as to enable us to make the assump­
tion that the intramolecular charge density of the fixed 
ions is approximately constant and given by the over-all 
degree of ionization. Considering e to be the numeri­
cal value of the electronic charge, we thus take the den­
sity, pf, of the fixed charges as 

ira2h 

The solution contains v positive monovalent counter-
ions, as well as the negative polyion. While other 
workers8,11 have assumed that association takes place 
between the counterions and the carboxylate ion groups, 
we have not made this assumption. For the sake of 
generality, we allow the solution to contain an excess of 
a uni-univalent salt (at a concentration of ns molecules 
per cm3 or ms moles per cm3) whose cation is the same as 
the counterions of the polyion. Even though it is pos­
sible to generalize this treatment to salts with multi­
valent counter- and/or co-ions, we restrict our calcula­
tions to uni-univalent salts since these are the ones of 
greatest interest. The rigorous calculation of the dis­
tribution of the counterions is a prohibitive task because 
of, among other things, excluded volume effects and 

(11) F. T. Wall and R. H. Doremus, /. Amer. Chem. Soc, 76, 868 
(1954). 
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possible ion-pair formation. Therefore, for lack of a 
better approximation, it is assumed12 that the central 
field of the polyion induces a Boltzmann distribution of 
the small ions, both within and outside the cylindrical 
polyion. Thus, the charge density at any point in the 
solution will depend on a, on the salt concentration, and 
on the polymer concentration. In order to evaluate the 
colhgative properties of the system, it is necessary to 
compute ^ at every point in the solution. 

The molarity of the glutamic acid residues is 1000-
rripZ. Since the polyion carries v fixed negative charges, 
and since there are v positive counterions associated 
with it, the concentrations (in moles/cm3) of counterions, 
m+, and co-ions, m-, in the system are 

m+ = vmp + ms (3) 

and 

m- = ms (4) 

Since we have assumed that the small ions obey a 
Boltzmann distribution, their local concentrations are 
given by 

H+ = n+°e-<*/kT (5) 

and 

n_ = nJe^/kT (6) 

where n+° and nJ are the concentrations at r = R, 
where \pB = 0, and are given by the conservation 
conditions 

v + nsy = C n+dV = 2TrAn+
0 [ e-*

/hTrdr (7) 
Jo Jo 

nsV= f ti-dV = 2-ivhnJ f e^/kTrdr (8) 
Jo Jo 

and 

or 

and 

n+° = (v + nsV\ 2irh f e-'+/kTrdr 

nJ = nsV lirh el*/kTrdr 
Jo 

(9) 

(10) 

Since the macromolecule is permeable to the solvent 
and to the small mobile ions, we may assume that the 
potential, \f/, is the same on both sides of the surface of 
the polyion, i.e., that the potential is continuous at this 
boundary (because a discontinuity in \p would imply an 
infinite local field), and that the electric field, b\(//dr, is 
continuous across the boundary at r = a (because no 
layer of free charges is assumed). Hence 

iinia) = vAou(a) (H) 

and 

(c^in/c>/-)a = (Won/dr)a (12) 

where the subscripts in and ou refer to the inside and 
outside, respectively, of the polyion. 

Because of the large (negative) value of \{/ inside the 
polyion, and also near the outside surface of the polyion, 

(12) Other assumptions about the distribution of the potential inside 
the macromolecule, which we have tried to use, did not give mathemati­
cal consistency. 

^,IkT wyj J36 vanishingly small in these regions; hence, 
the negative co-ions are effectively expelled from these 
regions. 

The Poisson-Boltzmann Equation 

The electrostatic potential ^ may be computed sep­
arately for the two regions O g c g a and a ^r g R, and 
joined at r = a by appropriate boundary conditions. 
Thus, the charge density, p, is evaluated separately for 
each region, and substituted in the Poisson equation. 
For this case of cylindrical symmetry, we obtain 

\U?<£) - ™ + X_e*'° - A+*?-**] (13) 

for 0 < x < Xi 

for the potential inside the polyion, and 

1 d / d^ouN = {KRy[X^u _ x+e*m] ( H ) 

*d.x\ dx } 

for Xi < x < 1 

for the potential outside the polyion, where p is obtained 
from eq 2, 5, and 6 

4> = eklkT 

x = rjR 

Xi = a/R 

2 = 4 ^ 2 

1 DkTa'h 

(15) 

(16) 

(17) 

(18) 

where D is the dielectric constant (assumed to be the 
same in the inner and outer regions), and 

- X + = n+°t 

Pi 

— ira2hn+° 

Pi 

nJe —ira2hn-

(19) 

(20) 

It should be noted that the quantity of eq 18 is not the 
usual Debye-Huckel parameter K, even though it has 
the same dimensions. 

Boundary Conditions. The aforementioned boun­
dary conditions may be written in terms of x as 

(Ax=I = 0 

\dx)x=1 

4>in(Xl) = 0ou(*l) 

(d(f>Jdx)xl = (d<j>0Jdx)xl 

Also, eq 7 and 8 may be rewritten as 

and 

where 

2X+ J e'^xdx = L + vp 

2A- e^xdx = L 

L = 
nsira2h 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

With these boundary conditions, it is possible to eval-
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uate 0 as a function of x throughout the range 0 ^ 
JC ^ 1, or ^ as a function of r throughout the range 0 g 
r ;£ R, as indicated in a later section. 

Derived Quantities. A knowledge of \p(r) leads 
immediately to the distribution of the mobile ions, W+ 

(f) and «_ (/•), from eq 5 and 6, and to various electro­
chemical quantities, in particular those that can be mea­
sured in potentiometric titration and osmotic pressure 
experiments. 

The potentiometric titration curve of a weak polyion 
containing a large number of the same kind of groups, 
with negligible nearest neighbor interactions, is given by 
the equation13,14 

pH = pKo — log 
1 -

a 
0.4343 

kT 
(28) 

where pA"0 is the intrinsic dissociation constant, a is the 
degree of dissociation at the given pH, and ^ is the elec­
trostatic potential on the surface of the polyion,16 i.e., at 
r = a. The term —0A343(eip/kT) is also designated 
ApK to indicate that it is the contribution of the electro­
static field of the polyion to the standard free energy of 
ionization of a single group. We may write ApK as 

ApA: = -0.4343 
T 4>dV 

ira2h 

-0.8686 f1' , I <t>xax 
vv Jo 

(29) 

The osmotic coefficient, <pp, is given by a generaliza­
tion5'16 of Langmuir's treatment17'18 as the ratio of the 
real to the ideal osmotic pressures, irrea] and 7rideai. 
Now 

Treat = («+° + tlJ)kT 
-Pl (X+ + \J)kT 

TTQ2 ft 
(X+ + XJ)kT (30) 

and 

Hence 

""ideal = (2«s + v/irR2h)kT (31) 

_v_ (X+ + X_) = X + + X-
^ p TTa2A (2«s + Vl-KR2K) IL + vv

 K ' 

It is seen from eq 30 that the parameters X+ and X_ 
determine the osmotic pressure. 

It is also of interest to compute the fractions, /+ and 
/ - , of the positive and negative ions inside the macro-
molecular cylinder. These are 

(13) G. S. Hartley and J. W. Roe, Trans. Faraday Soc, 36,101 (1940). 
(14) A. Katchalsky, N. Shavit, and H. Eisenberg, /. Polymer Sci., 

13, 69 (1954). 
(15) Marcus16 considers the potentiometric potential <// to be an aver­

age over the fixed polymeric charges. Since, in our case, the average 
density of the fixed charges is constant, the potential, adopting the view of 
Marcus, is equivalent to an average over the volume of the polymer. 
Hence, 4/ in eq 28 is a measurable quantity and no longer a function of r, 
but an average quantity given by eq 29. 

(16) R. A. Marcus, J. Chem. Phys., 23, 1057 (1955). 
(17) I. Langmuir, ibid., 6, 893 (1938). 
(18) E. J. W. Verwey and J. T. Overbeek, "Theory of the Stability of 

Lyophobic Colloids," Elsevier Publishing Co., Amsterdam, 1948, p 90. 

U- f 
Jo 

n+
0e"*/kTdV 

/ ; 
e~*xdx 

H3TrR2H + v 

! > -
^xdx 

(33) 

and 

/ - = r 
Jo 

e^xdx 

f 
Jo 

(34) 
e^xdx 

Parameters Used in Computation. In all the calcu­
lations, the temperature was taken as 3000K. The 
values of vp are based on dimensions of a polymer 
investigated by Goldstein,2 assuming that the chains are 
either in the a-helical or fully stretched conformations, 
respectively; the pertinent parameters are given in Table 
I. 

Table I. Illustrative Parameters of Multichain Polyglutamic Acid" 
Required for Computation of cp 

Conformation 

a-Helical 
Fully stretched 

hb X ab X 
109 cm 107 cm 

1.05 2.15 
2.52 5.02 

Up 

0.001096 
0.0144 

R' X 
10« cm 

6.50 
4.20 

a/R 

0.0331 
0.120 

" This polymer had 70 lysine residues in the backbone (cor­
responding to 70 branches) and 12 glutamic acid residues per branch, 
or 840 carboxyl groups per molecule. The concentration of 
carboxyl groups in Goldstein's experiments2 was 10-2 mole/1.; 
hence mp = 1.19 X 10~8 mole/ml. b In order to compute h and a, 
the length per amino acid residue was taken as 1.5 and 3.6 A 
for the a-helical and fully stretched conformations, respectively. 
The length of the lysine side chain was taken as 3.5 and 7 A in the 
a-helical and fully stretched conformations, respectively. c Other 
values of R were obtained for other concentrations, mp, using the 
relation/?2 = l/whrripN. 

In order to present the data in compact form, the cal­
culations were carried out for a discrete number of de­
grees of ionization, viz., a = 0.2, 0.4, 0.6, 0.8, and 1.0, 
corresponding to values of v = 168, 336, 504, 672, and 
840, respectively. The salt concentration appears in the 
parameter L of eq 27. 

Computational Procedure 

Equations 13 and 14 were solved for <j>(x) for various 
values of a, salt concentration, and polymer concen­
tration, using the Weizmann Institute CDC-1604 com­
puter for numerical integration. An iteration method 
was used to obtain the quantities X+, X-, as well as <f>-
(x). The details of the computations are available else­
where. 19 

Results and Discussion 

For each value of mp, ns, and v (and hence L), X+ and 
X- were obtained by the iteration method described in 
the previous section. The values of X+ and X- then 
yielded n+° and «-° from eq 19 and 20, respectively. 
Since 0(r) was also obtained from the solutions of eq 
13 and 14, n+(r) and «-(/*) were then computed from 

(19) These details have been deposited as Document No. NAPS-00573 
with the ASIS National Auxiliary Publication Service, c/o CCM Infor­
mation Corp., 909 3rd Ave., New York, N. Y. 10022. A copy 
may be secured by citing the document number and by remitting $1.00 for 
microfiche or $3.00 for photocopies. Advance payment is required. 
Make checks or money orders payable to: ASIS-NAPS. 
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Figure 2. Values of ^ as a function of x for a = 1 for (A) a-
helical (R = 6.50 X IO"6) and (B) stretched (R = 4.20 X IQ"6) con­
formations at various salt concentrations at T = 300 0K. The value 
of x, where r = a, is indicated by the arrow. The solution in (A) for 
0.1 M salt is the asymptotic one. 

eq 5 and 6, respectively; similarly /+ and / - were com­
puted from eq 33 and 34. Finally, ApK was obtained 
from eq 29 and <pv from eq 32. 

For very large values of ns (in practice, for ns > 1019 

molecules per cm3), the computational procedure19 be­
comes inaccurate. However, for high salt concentra­
tion, an asymptotic solution was obtained which is valid 
for n8 > 1019 molecules per cm8. The validity of this 
asymptotic solution is demonstrated elsewhere,19 by 
comparing the parameters obtained with the exact and 
asymptotic theories, respectively, for ns = 6.03 X 1018 

(0.01 M). 
Figure 2 is a plot of <j> vs. x for the helical and 

stretched conformations, respectively, for the data of 
Table I. It can be seen that the absolute values of <j> 
are much larger than unity, especially at low salt con­
centration, from x = 0 up to several times the radius of 
the cylinder. Thus, the use of the Debye-Hiickel ap­
proximation would have been invalid in this region of 
interest. It can also be seen that the absolute values of 
0 at x = 0 decrease markedly with increasing salt con­
centration. Figure 3 shows how <j> at x = 0 increases 
with increasing a. From Figures 2 and 3, it can be 
seen how <f> is depressed with increasing salt concentra­
tion. 

The potential determines the distribution of positive 
counterions and negative co-ions between the macro-
molecule and the surrounding medium. According to 
eq 5 and 6, the variations of n+(r) and «-(/)> respec­
tively, with r follow the behavior of <j>(r); i.e., most of 

Figure 3. Dependence of 4>x-o on a at various salt concentra­
tions for (A) a-helical and (B) stretched conformations, for the 
values of R shown in Figure 2. 

the counterions are drawn inside the molecule while the 
co-ions are expelled. A measure of this distribution of 
ions is given by/+ and / - , shown in Figures 4 and 5, re­
spectively. It can be seen how these quantities vary 
with salt concentration and a, and approach the limiting 
value of (a/R)2 as a (and hence <£) approaches zero 
(see eq 33 and 34). The potential also determines the 
variations of <pp and ApK with a at various salt concen­
trations (shown in Figures 6 and 7, respectively). 

Table II shows the dependence of ApK on a. and salt 
concentration. Table III shows the dependence of 
ApK on polymer concentration at three salt concentra­
tions. This range of mp covers that of Goldstein's data. 

Table II. Values of ApAf for the Multichain Polymer" at Various 
Salt Concentrations at 30° 

Confor­
mation 

Helical 

Stretched 

a 

0.2 
0.4 
0.6 
0.8 
1.0 
0.2 
0.4 
0.6 
0.8 
1.0 

0° 0.00001* 

3.99 
4.34 
4.54 
4.67 
4.78 
2.29 
2.67 
2.87 
3.01 
3.12 

3.96 
4.31 
4.51 
4.65 
4.75 
2.28 
2.66 
2.86 
3.00 
3.11 

A 
0.001" 

3.05 
3.41 
3.61 
3.75 
3.85 
1.77 
2.15 
2.35 
2.49 
2.57 

0.016 

2.09 
2.44 
2.64 
2.78 
2.88 
0.92 
1.27 
1.47 
1.61 
1.72 

0.1° 

1.26« 
1.56« 
1.74« 
1.86« 
1.96« 
0.23 
0.42 
0.57 
0.66 
0.78 

1.0° 

0.36« 
0.59« 
0.75« 
0.87« 
0.97« 
0.03O= 
0.060« 
0.090« 
0.12« 
0.15« 

0 At a polymer concentration of mp = 1.19 X 10 8 mole/ml. 
6 Salt concentration in moles/1. « Values from asymptotic solution. 

Calculation of Donnan Ratio. A multichain poly-
electrolyte can be involved in two types of Donnan 
equilibria, one between the macromolecule and its 
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Figure 4. Variation of/+ with a for (A) a-helical (R = 6.50 X 
1O-8) and (B) stretched (R = 4.20 X 1O-6) conformations at various 
salt concentrations at T = 3000K. The values of/+ at 1.0 M salt 
are too small to show on this scale. 

6 02 04 0.6 OB 

Figure 5. Variation of /_ with a for (A) a-helical (R = 6.50 X 
1O-8) and (B) stretched (R = 4.20 X ICT8) conformations at various 
salt concentrations at T = 3000K. 

surroundings, and the other an equilibrium across a 
membrane which separates the polymer solution from a 
polymer-free one. In this section, we consider the 
former type and compare the values of ApK, computed 
from eq 28 and 29, with those obtained by assuming the 
existence of a Donnan equilibrium between the macro-
molecule and its surroundings. In the next section, we 
will consider the Donnan equilibrium across a mem­
brane. 

To compute ApK, we write/+ (defined in eq 33) as 

/ + -
(n+)mTraih 

(n+)in7ro2/i + (n+)0U7r(/?2 - a*)h 
(35) 

Hence, the Donnan ratio becomes 

{n+)m _ (R*-a*\/ U \ „ ~ 

The Donnan potential for the macromolecule, regarded 

Figure 6. Values of <pt as a function of a for (A) a-helical (R = 
6.50 X 10-") and (B) stretched (R = 4.20 X 10~8) conformations at 
various salt concentrations at T = 300°K. 

ApK 0 

3.0 

4.0 

3.0 

2.0 

1.0 

A 

i 

_ ^ _ — - — ' OMond 0.00001 M 

^______- O00IM 

^ _ ^ _ _ — — OOTM 

^ _ _ _ _ — — "OTM 

1 . I 1 I l 

Figure 7. Variation of ApA: with a for (A) a-helical (R = 6.50 X 
IO-8) and (B) stretched (R = 4.20 X 10-8) conformations at various 
salt concentrations at T = 30O0K. 
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Table IK. Dependence of ApK on Polymer Concentration 

Confor­
mation 

Helical 

Stretched 

Salt 
concn, 

M 

0.001 

0.01 

0.1 

1.0 

0.001 

0.01 

0.1 

1.0 

Concn of 
carboxyl 
groups, 
mole/1. 

0.0020 
0.010 
0.100 
0.0020 
0.010 
0.100 
0.0020 
0.010 
0.100 
0.0020 
0.010 
0.100 
0.0020 
0.010 
0.100 
0.0020 
0.010 
0.100 
0.0020 
0.010 
0.100 

0.0020 
0.010 
0.100 

/Wp, 

mole/ml 

2.38 X 10-° 
1.19 X 10-8 

1.19 X 10"7 

2.38 X 10"9 

1.19 X 10-» 
1.19 X 10-' 
2.38 X 10-" 
1.19 X 10"8 

1.19 X 10-' 
2.38 X 10"9 

1.19 X 10"8 

1.19 X 10"7 

2.38 X 10-9 

1.19 X 10"8 

1.19 X 10-' 
2.38 X 10-' 
1.19 X 10-8 

1.19 X 10-' 
2.38 X 10-9 
1.19 X 10"8 

1.19 X 10-' 

2.38 X IO-9 

1.19 X IO"8 

1.19 X 10-' 

R X 10«, 
cm 

14.5 
6.50 
2.06 

14.5 
6.50 
2.06 

14.5 
6.50 
2.06 

14.5 
6.50 
2.06 
9.39 
4.20 
1.33 
9.39 
4.20 
1.33 
9.39 
4.20 
1.33 

9.39 
4.20 
1.33 

a = 0.2 

3.07 
3.05 
2.71 
2.26° 
2.09 
2.05 
1.26° 
1.26° 
1.12* 
0.36° 
0.36° 
0.35« 
1.85 
1.77 
1.09 
0.94 
0.92 
0.78 
0.28° 
0.23« 

/0.22 
1(0.27)° 

0.030° 
0.030° 
0.030° 

a = 0.4 

3.44 
3.41 
3.06 
2.56° 
2.44 
2.40 
1.56° 
1.56° 
1.45» 
0.59° 
0.59° 
0.59° 
2.24 
2.15 
1.39 
1.28 
1.27 
1.08 
0.49° 
0.42" 

/0 .39 
1(0.46)° 

0.060° 
0.060° 
0.059° 

- ApAT -
a = 0.6 

3.64 
3.61 
3.25 
2.74° 
2.64 
2.59 
1.74° 
1.74° 
1.64* 
0.75° 
0.75° 
0.75« 
2.46 
2.35 
1.56 
1.48 
1.47 
1.25 
0.64° 
0.57* 

/0.52 
1(0.60)° 

0.090« 
0.090« 
0.088« 

a = 0.8 

3.78 
3.75 
3.39 
2.86« 
2.78 
2.73 
1.86° 
1.86« 
1.78s 

0.87° 
0.87° 
0.87° 
2.60 
2.49 
1.69 
1.62 
1.61 
1.38 
0.76« 
0.66c 

/0 .63 
1(0.71)» 

0.12° 
0.12° 
0.12° 

a = 1.0 

3.88 
3.85 
3.66 
2.96° 
2.88 
2.83 
1.96° 
1.96« 
1.88» 
0.97« 
0.97° 
0.96° 
2.72 
2.57 
1.78 
1.73 
1.72 
1.48 
0.85° 
0.78" 

/0 .71 
1(0.80)° 

0.15« 
0.15° 
0.14« 

° Values from asymptotic solution. * In the asymptotic solution, these values are the same as for R = 6.50 X 1O-6. " In the asymptotic 
solution, these values are the same as for R = 9.39 X IO"6. 

as a phase, may be defined as 

log («+> , « * 

(n+), 
'" = 0.4343^, = -ApK (37) 

Since the potentiometric \p is independent16 of r, the 
last equality of eq 37 is an identification of ApK with 
the macroscopic Donnan potential. Making use of 
eq 36, eq 37 becomes 

- A p * = log ( ^ ~ - 2 ) + log (j^Tfl) (38) 

Equation 38 should hold at the higher salt concentra­
tions, where the ion atmosphere is denser, and a clearer 
distinction can be made between the macromolecular 
and solution phases; this is verified by the data in Table 
IV, where it is seen that eq 38 holds for salt concentra­
tions of approximately 0.01 M and higher. 

Donnan Equilibrium across a Membrane. Consider 
a polyelectrolyte solution at concentration mp to be in 
equilibrium across a membrane with a salt solution of 
concentration ns'. The Boltzmann distribution implies 
that the electrochemical potentials of the positive and 
negative ions, respectively, in the polymer solution are 
independent of r, and hence can be set equal to their 
values &tr = R. It then follows that 

' 2 — n .0 = «+"«_" (39) 

Since n+0 and n-° have been computed for each value of 
mp, ns, and v from eq 19 and 20, we immediately obtain 
ns'fromeq39. 

The Donnan equilibrium across the membrane may 
be expressed in terms of the quantity T defined as 

r = 
— ns 

Nmp(v/a) 
(40) 

Table TV. Comparison of ApK Values with Those Computed 
from Donnan Potential for the Helical Conformation at a 
Polymer Concentration of mp = 1.19 X 10-8 mole/ml 

Salt 
concn,M 

ApK from 
Eq 28 and 29 Eq 38 

0.001 

0.01 

0.1 

0.2 
0.4 
0.6 
0.8 
1.0 
0.2 
0.4 
0.6 
0.8 
1.0 
0.2 
0.4 
0.6 
0.8 
1.0 

3.05 
3.41 
3.61 
3.75 
3.85 
2.09 
2.44 
2.64 
2.78 
2.88 
1.26 
1.56 
1.74 
1.86 
1.96 

2.91 
3.21 
3.37 
3.48 
3.56 
2.09 
2.44 
2.62 
2.75 
2.85 
1.26 
1.56 
1.74 
1.86 
1.96 

Table V. Dependence of T on Polymer Concentration" 

Conformation mp, mole/cm3 

Helical 

Stretched 

1.19 X IO"8 

1.19 X 10"7 

1.19 X IO"8 

1.19 X 10"' 

0.011 
0.015 
0.057 
0.067 

« For H8 = 6.03 X 1018(0.01 M), <* = 1.0. 

The treatment in this section emphasizes the difference 
between our treatment for finite polymer concentration, 
compared to that of Gross and Strauss8 for a polymer at 
infinite dilution. Thus, we are able to compute the de­
pendence of T on mp, as shown in Table V. Some ex­
perimental values of T for linear polyelectrolytes at 0.01 
M salt20 are of the same order of magnitude as those 

(20) See Figure 9 of ref 5. 
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shown in Table V for the stretched conformation 
(which is more like the linear polymer than is the helical 
multichain polymer). 

Comparison between Computed and Experimental 
ApK values. Some of the data of Table II are plotted 
in Figure 8 together with experimental data of Gold­
stein.2 The departure of the experimental carboxyl 
group concentrations (cited in the legend) from 0.01 M 
is neglected in the comparison with the experimental re­
sults, since these deviations have a negligible effect on 
ApK, as can be seen from the data of Table III. The 
experimental values of ApK were computed as [pH — 
log a/(l —a) — pATo], according to eq 28. 

A preliminary examination of the experimental data 
indicated that the value of pK0 differed by several tenths 
of a pK unit for the helical and for the stretched con­
formations, an observation also reported by Hermans21 

for the helical and randomly coiled forms of linear poly-
L-glutamic acid, and detectable in the data of Nylund 
and Miller2 2 for the same linear polymer.2 3 This differ­
ence may be rationalized by realizing that eq 28 is in­
complete in attributing ApK solely to electrostatic 
effects. Actually, ApA' should be written as 

A p * = Aptfelec + A P ^ H B + ApKconf (41) 

where ApK^ec is the electrostatic contribution computed 
in this paper, Apî HB is a contribution arising from pos­
sible hydrogen bonding24 between un-ionized side-chain 
carboxyl groups, and ApKconi is a contribution arising 
from nonspecifiable conformation effects which may 
influence the degree of accessibility of the carboxyl 
groups. As a result, the pKa of eq 28 is really 

ptfo = P#oint + A P ^ H B + Ap#conf (42) 

where pAVnt is the intrinsic pK0 that would be observed 
for a model compound, in the absence of all the ApK 
contributions. While one can rationalize the differ­
ence in pî o between the helical and stretched conforma­
tions in terms of differences in ApATHB and ApKcoa{, re­
spectively (e.g., by estimating the effect24 of a different 
degree of hydrogen bonding in both conformations), we 
prefer to rely on the experimental observation, made 
here and in the literature,21-23 that such differences 
exist. Accordingly, we may account for the data of 
Figure 8 by assigning pK0 values of 4.60 and 4.30 to the 
stretched and helical conformations, respectively. 

Since a preliminary examination of the data indicated 
that the conformation was probably essentially helical at 
all values of a at 1.0 Af salt (except perhaps at very high 
values of a), and essentially stretched at all values of a 
at 0.01 M salt (except perhaps at very low values of a), 
the p#o values used to obtain the experimental data of 
Figure 8, at these salt concentrations, were 4.30 and 
4.60, respectively. For the intermediate concentration, 
0.1 M salt, where we may expect a more pronounced 

(21) J. Hermans, Jr., / . Phys. Chem., 70, 510 (1966). 
(22) R. E. Nylund and W. G. Miller, /. Amer. Chem. Soc, 87, 3537 

(1965). 
(23) See also A. Wada, MoI. Phys., 3, 409 (1960), M. Nagasawa and 

A. Holtzer,/. Amer. Chem. Soc., 86,538 (1964), and H. J. Sage and G. 0 . 
Fasman, Biochemistry, S, 286 (1966), for a similar effect. 

(24) M. Laskowski, Jr., and H. A. Scheraga, J. Amer. Chem. Soc, 76, 
6305 (1954). 
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Figure 8. Dependence of kpK on a at 1.0, 0.1, and 0.01 M 
salt at 30°; the concentration of carboxyl groups at each of these 
salt concentrations was 0.008, 0.014, and 0.0018, respectively. 
The curves are theoretical (from the data of Table II for helical 
and stretched conformations, respectively) and the points are 
experimental2 [computed from the following values of pK0, as dis­
cussed in the text: at 1.0 M, pKa = 4.30; at 0.1 M, pK0 =4.3 for 
a < 0.5 and 4.6 for a > 0.5 (solid circles) (the open circles are the 
experimental data for pKo = 4.6 for a < 0.5 and 4.3 for a > 0.5); at 
0.01 Af1P^T0 = 4.60]. 

helix -*• stretched transition as a is increased, we have 
used pK0 = 4.30 for 0 < a < 0.5 and 4.60 for 0.5 < a 
< 1.0 (the filled circles in Figure 8); it is not intended to 
imply that pKa changes abruptly at a = 0.5, but rather 
that there is a uniform change in pK0 in this region of a. 
It can be seen from Figure 8, that the use of these p-rvVs 
is consistent with the interpretation that the polymer is 
essentially in the helical and stretched conformations at 
high and low salt concentrations, respectively, at almost 
all values of a, but that, at intermediate salt concentra­
tions (~0.1 M), an increase of a leads to a change of 
conformation from the helix to the stretched state. 

Comparison between Computed and Experimental 
<pp Values. An unpublished rough measurement of 
<PP in the absence of salt (made by Alexandrowicz) indi­
cates that the order of magnitude of the experimental 
value (<~0.15 for the sodium salt in water) is the same as 
that computed for the stretched conformation at mod­
erately high values of a (see Figure 6). 

Comparison with "Infinite Dilution" Theories. As 
already pointed out, the Wall-Berkowitz9 and Lifson10 

solutions for spherical polyelectrolytes and the Gross-
Strauss8 solution for cylindrical ones apply to polymers 
at infinite dilution. In contrast to these treatments, in 
which the electrostatic potential falls to zero at infinite 
distance from the polymer (and, therefore, the theory 
applies only at infinite dilution of polymer), our results 
apply at finite polymer concentration, with the potential 
falling to zero at the boundary of the cell, i.e., atr = R 
(see Figure 1). From a comparison of our results with 
those of Wall-Berkowitz, Lifson, and Gross-Strauss, it 
is found that our results extrapolate to theirs at infinite 
dilution (where our R approaches infinity). 
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